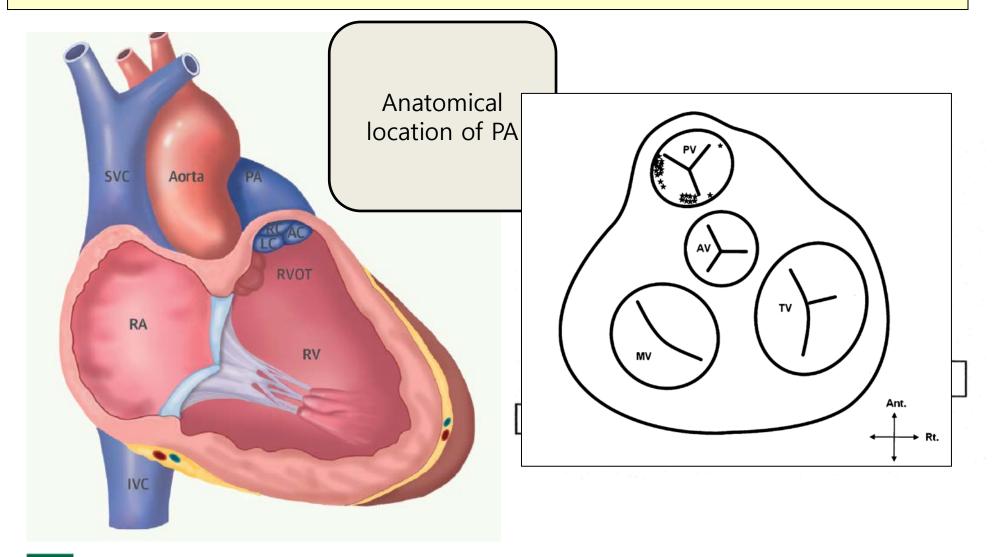
Ventricular tachycardia originating from pulmonary artery

Assistant professor. Junbeom Park M.D., Ph.D.

Director of Electrophysiology Lab.

Department of Cardiology, College of Medicine.

Ewha Womans University, Seoul, Korea


EWHA WOMANS UNIVERSITY MEDICAL CENTER

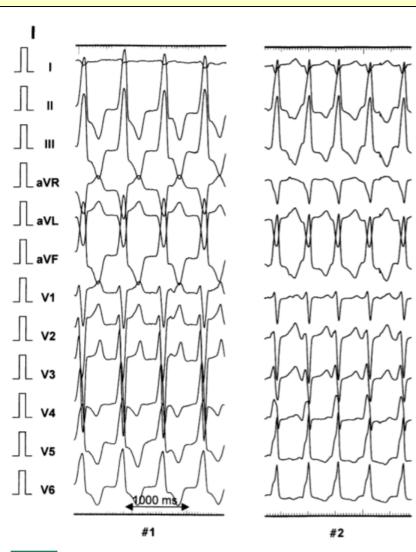
Intro

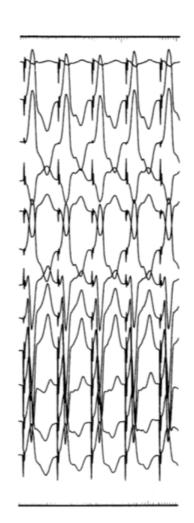
- Right ventricular outflow tract (RVOT) and left ventricular outflow tract are the most common sites of origin for idiopathic ventricular tachycardia (VT)
- Less commonly, idiopathic ventricular arrhythmias (VAs) can originate from the pulmonary artery (PA)
- 21% to 46% were localized beyond the PV
- Histopathological studies have shown that ventricular myocardium may extend into the aorta and PA
- Extending into the great vessels with abnormal automaticity or triggered activity may be the underlying mechanism of these VAs
- PA-VAs were not induced by programmed stimulation in any patient, strongly suggesting a mechanism most likely due to automaticity from the myocardium with the PSC
- Most of these VAs were located 8 mm above the PV

Anatomic location of the successful ablation sites in the pulmonary artery group

Comparison of Clinical Characteristics and Electrophysiologic Data (vs. RVOT VT)

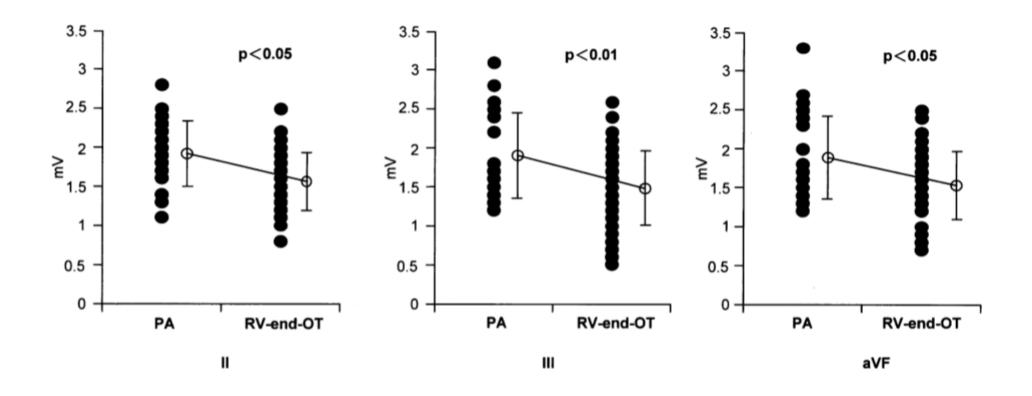
Variable	PA Group	RV-end-OT Group	p Value
Gender (M/F)	9/15	15/33	NS
Age (yrs)	53.7 ± 13.9	58.0 ± 12.1	NS
VPCs per day (n)	$20,262 \pm 12,636$	$16,708 \pm 11,712$	NS
RF applications (n)	3.7 ± 2.2	5.5 ± 4.5	NS
EAT (ms)	-32.9 ± 16.6	-32.4 ± 13.1	NS
Pace mapping score (n/12)	11.3 ± 0.75	11.3 ± 0.74	NS
Use of high-output pacing unit	15/24 (63%)	0/48 (0%)	p < 0.01


Values are mean \pm SD.


EAT = earliest endocardial activation time; PA = pulmonary artery; RF = radiofrequency; RV-end-OT = endocardial right ventricular outflow tract; VPCs = ventricular premature contractions.

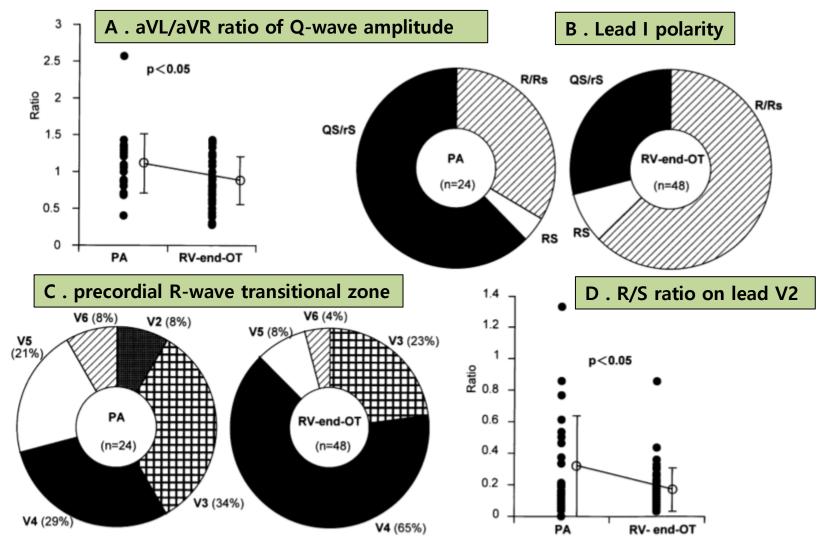
The electrocardiograms

Ш

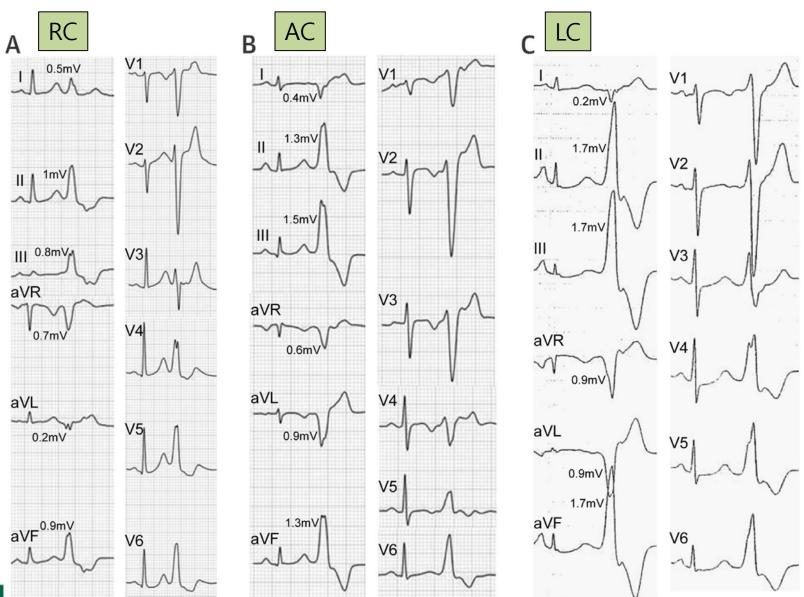


M/58, Clinical VT originating 1.1cm above PV

- I. Clinical VT
- II. Pacemapping

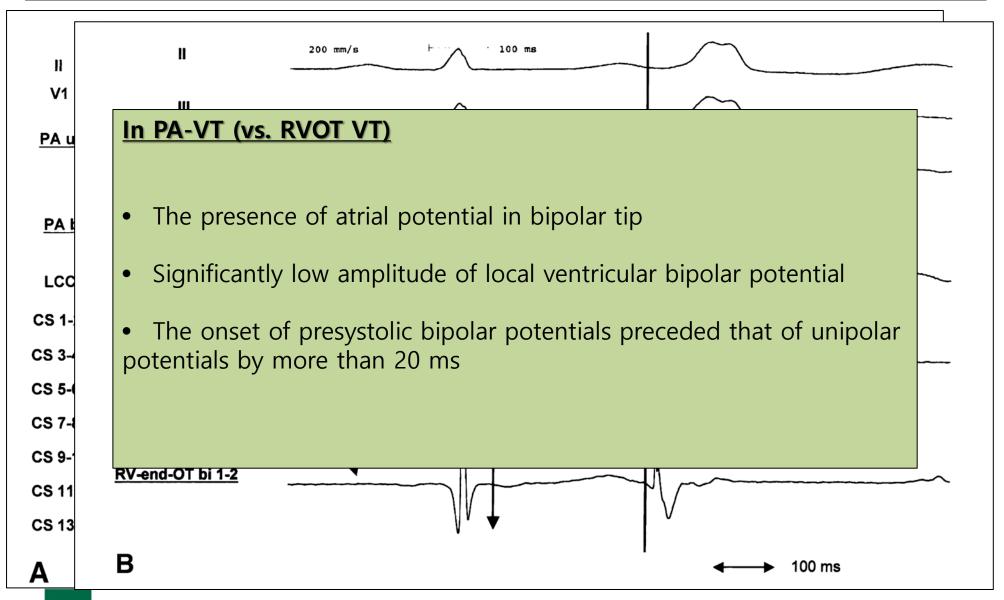


The R-wave amplitudes on inferior leads (vs. RVOT VT)



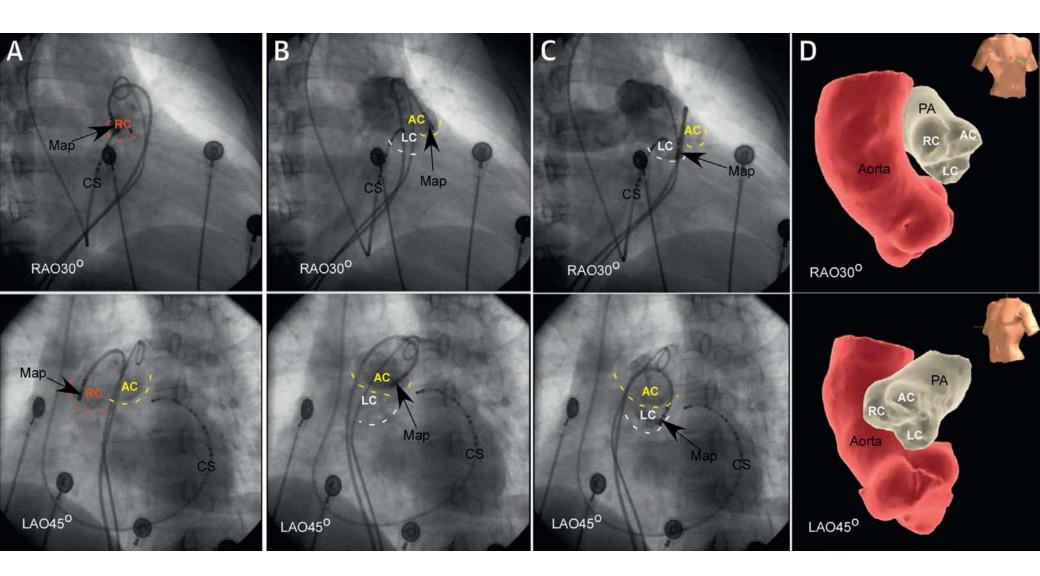
Comparison of electrocardiograms between the PA and RVOT

Comparision of EKG among PA-cusp



Comparision of EKG among PA-cusp

		Right Cusp (n = 10)	Anterior Cusp (n $=$ 6)	Left Cusp (n = 8)
	R-wave amplitude in I, mV	$\textbf{0.37} \pm \textbf{0.17*}$	$\textbf{-0.30} \pm \textbf{0.31}$	$\textbf{-0.03} \pm \textbf{0.29}$
	R-wave amplitude in II, mV	$\textbf{1.29} \pm \textbf{0.20}$	$\textbf{1.56}\pm\textbf{0.46}$	$\textbf{1.98} \pm \textbf{0.42}$
	R-wave amplitude in III, mV	$\textbf{1.04} \pm \textbf{0.28*}$	$\textbf{1.74}\pm\textbf{0.34}$	$\textbf{1.98} \pm \textbf{0.35}$
	R-wave amplitude III/II	$\textbf{0.80} \pm \textbf{0.16*}$	$\textbf{1.16} \pm \textbf{0.23}$	1.00 ± 0.09
	Q-wave amplitude in aVR, mV	$\textbf{0.79} \pm \textbf{0.12}$	$\textbf{0.79} \pm \textbf{0.33}$	1.06 ± 0.28
	Q-wave amplitude in aVL, mV	$\textbf{0.48} \pm \textbf{0.18*}$	$\textbf{0.97} \pm \textbf{0.18}$	1.11 ± 0.33
	Q-wave amplitude aVL/aVR	$\textbf{0.63} \pm \textbf{0.29*}$	$\textbf{1.37} \pm \textbf{0.43}$	$\textbf{1.07} \pm \textbf{0.32}$
	R-wave amplitude in aVF, mV	1.14 \pm 0.25*	$\textbf{1.62}\pm\textbf{0.42}$	2.11 ± 0.45
	R-wave amplitude in V ₁ , mV	$\textbf{0.16} \pm \textbf{0.07}$	$\textbf{0.32} \pm \textbf{0.28}$	$\textbf{0.26} \pm \textbf{0.09}$
	S-wave amplitude in V_1 , mV	$\textbf{1.47} \pm \textbf{0.43}$	$\textbf{1.17} \pm \textbf{0.48}$	$\textbf{1.58} \pm \textbf{0.65}$
	R/S ratio on V1	$\textbf{0.11} \pm \textbf{0.03}$	$\textbf{0.28} \pm \textbf{0.20}$	$\textbf{0.19} \pm \textbf{0.10}$
	R-wave amplitude in V_2 , mV	$\textbf{0.34} \pm \textbf{0.17}$	$\textbf{0.50} \pm \textbf{0.29}$	$\textbf{0.48} \pm \textbf{0.23}$
	S-wave amplitude in V ₂ , mV	$\textbf{2.17} \pm \textbf{0.92}$	$\textbf{2.22} \pm \textbf{0.80}$	2.53 ± 0.74
	R/S ratio on V ₂	$\textbf{0.16} \pm \textbf{0.06}$	$\textbf{0.28} \pm \textbf{0.25}$	$\textbf{0.20} \pm \textbf{0.08}$
	Incidence of large R in I	10 (100)*	1 (17)	2 (25)
	Incidence of notching in II, III, and aVF	7 (70)	2 (33)	2 (25)
	Duration of QRS, ms	155 \pm 15.2*	$\textbf{134.2} \pm \textbf{14.0}$	$\textbf{133.8} \pm \textbf{12.5}$



M/39 PA VT vs. F/60 RVOT VT

Anatomical ablation site

Ablation tips

- Complications: PA stenosis and damage to the left main coronary artery may occur
 - Better contact with effective energy delivery within the PSC by curving the ablation catheter to form a <u>reversed U curve</u>
 - Supported with a long sheath in the right ventricle.
- Different from mapping and ablation results of VA
 - VAs were located at the PSC nadir, the origin from RVOT close to the PSC cannot be totally excluded in some patients
 - During VAs, conduction propagates through preferential conduction pathways and exits from the distal RVOT.

Summaries

- VA demonstrating LBBB morphology and inferior axis deviation
- Mapping in the RVOT may not identify the site of earliest activation and/or mismatched QRS morphology by pace mapping
- In failed ablation in RVOT ablation
- ⇒ Mapping at the PSC should be performed, and VAs arising from the PSC are not uncommon
- ⇒ These VAs can be successfully ablated with a reversed U curve within the PSC.

Thank you for your attention!!

이대목동병원 Ewha Mokdong Hospital 이화여자대학교 의료원 새 병원 Ewha Seoul Hospital

이와여자 대학교 의료원 EWHA WOMANS UNIVERSITY MEDICAL CENTER